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The moiré lattice has recently attracted broad interest in both solid-state physics and photonics where
exotic phenomena in manipulating the quantum states are explored. In this work, we study the one-
dimensional (1D) analogs of “moiré” lattices in a synthetic frequency dimension constructed by coupling
two resonantly modulated ring resonators with different lengths. Unique features associated with the
flatband manipulation as well as the flexible control of localization position inside each unit cell in the
frequency dimension have been found, which can be controlled via the choice of flatband. Our work
therefore provides insight into simulating moiré physics in 1D synthetic frequency space, which holds
important promise for potential applications toward optical information processing.
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Moiré lattices constructed by two periodic layers stacked
with a relative angle attract great interest in the solid-state
physics, exhibiting exotic phenomena [1–10] including
strong electron correlation [4], topological mosaics [5],
moiré excitons [9], and fractional Chern insulators [10].
Recently, photonic analogs of moiré lattices taking advan-
tage of simple photonic geometries to manipulate light
attract to attention [11–16], demonstrating rich physics
such as optical solitons [12], localization and delocalization
of light [13], and on-chip light trapping [16]. Various
simulation methods utilizing coupled-mode theory [14] and
applying high-dimensional plane wave expansion [15] have
been developed. Recently, one-dimensional (1D) analogs
of moiré lattices [17] having the capability of exploring
physics associated with the moiré lattice in simpler geo-
metry trigger interest. For example, gauge fields in
photonic metacrystals [18], almost-perfect flatbands, and
unconventional localization in photonic crystals [19], and
widely tunable Q factors in integrated silicon photonic
nanowires [20] have been successively explored in one
spatial dimension. On the other hand, constructing
photonic lattices with synthetic dimensions attracts
growing attention for simulating physics with simple
structures [21–23], which therefore raises a natural ques-
tion: can a 1D photonic moiré lattice be explored with few
coupled rings [24–27]?
Here, we study a 1D analog of a “moiré” lattice along the

frequency axis of light in two coupled ring resonators with
different lengths under modulations. Two sublattices are
constructed by applying resonant modulations on both
rings [28], with their relative sizes playing the role of

the twist angle between two sublattices. Together with the
coupling between two rings, our proposed model constructs
a synthetic 1Dmoiré lattice in the frequency dimension. We
apply the transfer-matrix method [29], which crucially
takes into account off-resonant modes of the coupled ring
system. The nonflat to flat band transition in the synthetic
space can be realized by engineering the coupling strength
between two rings. We find that each spectral flatband
corresponds to one localized mode with controllable
localization position in one spectral unit cell. In contrast
to peculiar nearly flat topological bands in two-dimensional
moiré lattice at a magic angle wherein the localization
position is fixed in the momentum space [30], the locali-
zation frequency inside one unit cell can be selectively
excited. Furthermore, different from previous work of
exploring the flatband in synthetic two-dimensional
Lieb lattice [31], our study shows that there exists a
correspondence between the flatband and the detailed
localization position in each spectral unit cell, which thus
provides a new direction towards controlling frequency
conversions and localized frequency modes based on the
moiré physics. Our work also holds important promise
for potential applications towards the optical channel
selection [32] and optical signal coding [33] with exper-
imental reconfigurability and flexibility in synthetic fre-
quency dimension.
We consider two rings with different lengths [see

Fig. 1(a)]. The circumference of ring A (B) is LA ¼
L=NA (LB ¼ L=NB). L is a length constant and NAðNBÞ
is a positive integer. The free spectral range (FSR) of ring
A (B) is ΩA ¼ 2πvg=LA (ΩB ¼ 2πvg=LB), with vg being
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the group velocity. Resonant frequencies in ring A (B) are
ωA;m ¼ ω0 þmΩA ¼ ω0 þmNAΩ (ωB;m ¼ ω0 þmΩB ¼
ω0 þmNBΩ), where ω0 is the reference frequency which
is set to be equal for ring A and ring B, m is an integer, and
Ω ¼ 2πvg=L, shown in Fig. 1(b). Each unit cell in
frequency dimension has the range of NANBΩ. U labels
the index of a unit cell and n denotes all possible mode in
one unit cell. Two nearest sites are separated by Ω in
frequency dimension. We perform electro-optic modulation
(EOM) inside ring A (B) resonantly at ΩA (ΩB) with
modulation strength αðβÞ. In each ring, a synthetic lattice in
frequency dimension is therefore created. Note when
ΩA=ΩB is an irrational number the formed lattice is
quasiperiodic [34–38]. However, here we consider cases
where ΩA=ΩB are rational numbers, so there exists a large
unit cell in frequency dimension, associated to a 1D
bichromatic moiré lattice [17].
Two rings are coupled. Because of the different lengths

of two rings, the optical field at a resonant mode in one ring
leaks energy into another ring, where the field becomes
nonresonant [see Fig. 1(c)]. We find that the roles of these
possible nonresonant modes cannot be simply ignored,
because EOMs convert the frequencies of these modes and
then energies of these converted nonresonant modes may
couple into the other rings, before the energy of the
nonresonant mode dissipates. The model here constructs
a one-dimensional synthetic moiré lattice in frequency
dimension. Such a synthetic lattice contains characteristics
of 1D analogs of moiré lattice, where the ratio of relative
sizes of two sublattices along the frequency dimension is
given by two coprime integers, such as 5∶3, as an analog of
twist angle in two-dimensional lattice. Even though 1D
analogs of moiré lattices have been studied in cold atom
systems [17] and photonic crystals [19,20], our model is
fundamentally different, not only in a sense of using a
synthetic lattice in frequency dimension, but also due to the
fact that the minor effect from nonresonant modes is
included, enabling a scheme to manipulate the localization
position inside one unit cell.

To explore our model, we introduce the transfer-
matrix method [29], which is briefly summarized here.
We consider all possible modes labeled as ωU;n ¼ ω0þ
ðU − 1ÞNANBΩþ nΩ, where U ¼ 1; 2;… and n ¼
1; 2;…; NANB. As an example, we show the physical
geometry of rings and 1D synthetic moiré lattice with ratio
ΩA∶ΩB ¼ NA∶NB ¼ 5∶3 in Fig. 1. To apply the transfer-
matrix method, we divide each ring into equal length
segments, so light undergoes a sequence of alternating free
propagation for a fixed time δt ¼ L=ðNANBvgÞ followed
by scattering involving a change in its frequency via
modulation, coupling into the other ring, or coupling to
the external waveguides used for input or output, as
illustrated in Fig. 1(a) [39]. We label scattering points as
j ¼ 1;…; NBðNAÞ. The optical field at each scattering
point j is expanded by modal amplitudes aj;U;nðbj;U;nÞ with
carrier frequency ωU;n in ring A (B).
We study the scattering process with discrete time

variables tiþ1 ¼ ti þ δt. The transfer process between
scatter points is given by

ajþ1;U;nðtiþ1Þ ¼ eiδω·δteiβ
0
nL=ðNANBÞaj;U;nðtiÞ; ð1Þ

bjþ1;U;nðtiþ1Þ ¼ eiδω·δteiβ
0
nL=ðNANBÞbj;U;nðtiÞ; ð2Þ

where δω is frequency detuning and β0n ¼ ωU;n=vg is wave
vector satisfying eiβ

0
nL=ðNANBÞ ¼ei2ðn−1Þπ=ðNANBÞ. We perform

EOMs at j ¼ 3 in both rings, modulated by synchronized
signals at α cosðΩAtÞ and β cosðΩBtÞ, which provides [42]

a3;U;nðtþi Þ ¼
X
U0;n0

a3;U0;n0 ðt−i ÞiqNA;U
0 ;n0JqNA;U

0 ;n0 ðαÞ; ð3Þ

b3;U;nðtþi Þ ¼
X
U0;n0

b3;U0;n0 ðt−i ÞiqNB;U0 ;n0JqNB;U
0 ;n0 ðβÞ; ð4Þ

where qNA;U0;n0 ¼ ½NANBðU0−UÞþn0−n�=NA, qNB;U0;n0 ¼
½NANBðU0 −UÞ þ n0 − n�=NB are integers corresponding
to the spacing between two modes. JqNA;U

0 ;n0 ðαÞ [JqNB;U
0 ;n0 ðβÞ]

is the Bessel function of the first kind and t�i ¼ ti þ 0�. The
coupling between two rings at j ¼ 1 gives [43]�
a1;U;nðtþi Þ
b1;U;nðtþi Þ

�
¼
0
@ ffiffiffiffiffiffiffiffiffiffiffiffi

1− γ2
p −iγ
−iγ ffiffiffiffiffiffiffiffiffiffiffiffi

1− γ2
p

1
A�

a1;U;nðt−i Þ
b1;U;nðt−i Þ

�
;

ð5Þ
where γ is the coupling strength between two rings.
Thus, we obtain a complete set of Eqs. (1)–(5) that

describes the propagation and conversion of light circulat-
ing in two rings. By substituting Eqs. (3)–(5) into Eqs. (1)
and (2), we can re-write the dynamic process into an
evolution function

ψðtiþ1Þ ¼ eiδω·δtHψðtiÞ; ð6Þ

(a) (b)

(c)

FIG. 1. (a) Schematic of two coupled rings with relative lengths
ΩA∶ΩB ¼ 5∶3, each of which are divided into equal-length parts.
(b) All possible modes of ring A (B) in blue (green) circles are
separated byΩ, where resonant (nonresonant) ones are labeled by
solid (hollow) circles. The dashed rectangle denotes one unit cell.
(c) All modes are coupled through resonant modulations in both
rings (blue and green lines). Black lines represent couplings
between modes in ring A and ring B at the same frequency.
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where H is the matrix form of the transfer relationship between each optical component and ψðtiÞ ¼2
664…; a1;U;1ðtiÞ;…; aNB;U;1ðtiÞ; b1;U;1ðtiÞ;…; bNA;U;1ðtiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼1

;…; aj;U;2ðtiÞ;…; bj;U;2ðtiÞ;…|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n¼2

;…

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U

; a1;Uþ1;1ðtiÞ; ..; bj;Uþ1;1ðtiÞ;…|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n¼1

;…;…

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uþ1

;…

3
775
T

. The

corresponding band structure in the kf space can then be obtained. We consider the lattice is infinite, so the translation
symmetry holds with spectral periodicity NANBΩ. Fourier transforms a1;kf;n ¼

P
U a1;U;ne−ikfUNANBΩ

(b1;kf;n ¼
P

U b1;U;ne−ikfUNANBΩ) are applied and Eq. (6) becomes ψkf ¼ eiδω·δtHkfψkf , where Hkf is the transfer-matrix

form in the kf space and ψkf ¼
"
a1;kf ;1;…; aNB;kf ;1; b1;kf ;1;…; bNA;kf ;1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼1

;…; aj;kf ;2;…; bj;kf ;2;…|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n¼2

;…

#
T

. In the steady-state limit, we

obtain the eigenfunction equation as e−iδω·δtψkf ¼ Hkfψkf . The band structure between frequency detuning (δω) and
reciprocal lattice vector (kf) is therefore obtained by diagonalizingHkf and taking the natural logarithm of eigenvalues [29].
Since δωδt is a phase factor, δω ∈ ½−NANBΩ=2; NANBΩ=2�.
We here analyze band structures of three 1D synthetic moiré lattices with different ratios of ΩA∶ΩB ¼

NA∶NB ¼ 4∶3; 5∶3, and 7∶5, respectively, while choosing α ¼ 0.2, β ¼ 0.2, and varying γ. We define P to quantify
the eigenstate distribution ratio between ring A and ring B:

P ¼
�PNANB

n¼1

PNB
j¼1 jaj;kf;nj2
NB

−
PNANB

n¼1

PNA
j¼1 jbj;kf;nj2
NA

�
=
�PNANB

n¼1

PNB
j¼1 jaj;kf;nj2
NB

þ
PNANB

n¼1

PNA
j¼1 jbj;kf;nj2
NA

�
; ð7Þ

where P ¼ 1ð−1Þ denotes that the energy of the eigenstate
is fully distributed on modes in ring A (B). We plot δω with
the labeled P in the kf dimension for γ ¼ 0.1 in Figs. 2(a)–
2(c). The band structures hold the periodicity of Ω and the
regime of δω ∈ ½−Ω=2;Ω=2� is of practical importance,
which results in 7, 8, 12 bands inside this regime in three
lattice structures, respectively. The number of bands in

δω ∈ ½−Ω=2;Ω=2� is consistent with the number of reso-
nant modes in one unit cell. As the example of ΩA∶ΩB ¼
5∶3 where 8 resonant modes are in one unit cell [see
Fig. 1(b)], there are 8 bands in Fig. 2(b). One can see that,
in Figs. 2(a)–2(c), all bands are nonflat, while eigenstate
distribution ratios, P, change for different kf. Projected
band structures versus γ are shown in Figs. 2(g)–2(i), where
increasing γ leads each band to eventually become flat.
There exists threshold γs, as indicated by the red dashed
line for each lattice structure (ΩA∶ΩB ¼ 4∶3; 5∶3, 7∶5).
For γ larger than γs, the band structure exhibits the flat
feature and uniform eigenstate distribution, where the
criterion of γs can been found in the Supplemental Material
[39]. In Figs. 2(d)–2(f), we plot band structures at γ ¼ γs
for three lattice structures. All bands are flat, and also P
remains unchanged when varying kf. We find that, once
γ ≥ γs, the bands are highly flat, with very small fluctua-
tions ≲1% of the maximum bandwidth. In general, γ plays
a key role in controlling the nonflat to flat band transition.
One sees that γs for the lattice structure with ΩA∶ΩB ¼ 7∶5
is the smallest, while γs for the case of ΩA∶ΩB ¼ 4∶3 is the
largest in three structures. Such transition occurs between
two limits, i.e., the weak coupling limit (γ ≲ 0.1) and the
strong coupling limit (γ → 1) [39]. Especially for γ ¼ 1, the
coupled two rings effectively become one large ring and,
consequently, the modulations are no longer resonant,
hence perfectly flat bands are expected. Nevertheless,
highly flat bands appear well before the strong coupling
limit (i.e., γ < 1), as interactions between the mismatched
modes in the two rings via the coupling become stronger

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 2. The band structures of 1D synthetic moiré lattices for
different ratios ofΩA∶ΩB, (a)–(c) at γ ¼ 0.1 and (d)–(f) at γ ¼ γs.
(g)–(i) The projected bandstructures versus γ, where black dashed
lines denote γ ¼ 0.1 and red dashed lines denote γ ¼ γs.
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when γ is increasing, and finally overcome effects of
connectivities between modes in each ring via the resonant
modulations. In the following, we choose the case of
ΩA∶ΩB ¼ 5∶3 to further illustrate the characteristic of
flatbands.
We examine the eigenstate distribution for 8 nondegen-

erate flatbands in the structure with ΩA∶ΩB ¼ 5∶3 at
γ ¼ γs ¼ 0.65. In Fig. 3, we plot the corresponding
normalized eigenstate distributions of 8 bands at kf ¼
−π=ðNANBΩÞ, which are defined as

janj2 ¼
1

N
1

NB

XNB

j¼1

jaj;kf;nj2; ð8Þ

jbnj2 ¼
1

N
1

NA

XNA

j¼1

jbj;kf;nj2; ð9Þ

where N ¼ P
n½ð1=NBÞ

PNB
j¼1 jaj;kf;nj2 þ ð1=NAÞ×PNA

j¼1 jbj;kf;nj2� is the normalization coefficient.
Figures 3(a)–3(h) correspond to the band index of the first
band to the eighth band in Fig. 2(e) in the order from top to
bottom. One can see the striking feature is that each
eigenstate distribution shows the localization of the energy
on nearly one site inside the unit cell along the frequency
dimension, though the ratio between janj2 and jbnj2 is
different. We show the eigenstate distributions at one kf in
Fig. 3. However, we find that the trend of eigenstate
distributions remains almost the same throughout the entire
kf space, which is also inferred from Fig. 2(e). The
eigenstates distribute at 7 frequencies in one unit cell, so
we can denote site n ¼ 1,4,6,7,10,11,13 as frequency
channels 1 to 7, respectively. In Fig. 3(i), we plot the
quantity janj2 þ jbnj2 with the band index and frequency
channel (see more description of the relationship between
band index and localization position in Supplemental
Material [39]). In contrast to two-dimensional moiré lattice
at the magic-angle, where the peculiar nearly flat topo-
logical bands are obtained by combining a trivial flatband
(“heavy fermions”) and gapless topological semimetal
bands, resulting in the localization position being fixed
at the AA-stacking regions of one unit cell [30], we take
advantage of mode couplings between two rings to obtain
the selective excitation of different frequency channels.
Moreover, our proposed lattice exhibits the flatband cor-
responding to a single localized frequency mode inside one
unit cell, which is fundamentally different from previous
works on other platforms [19]. The eigenstate distributions
for other synthetic lattice structures such as those with
ΩA∶ΩB ¼ 4∶3 and 7∶5 hold similar features [39].
The localization position in each spectral unit cell is not

fixed when γ is small. In particular, the intensity distribu-
tions associated with eigenstates are not localized for small
γ, but they gradually become localized when γ becomes

larger. It is interesting to note that, in 1D synthetic moiré
lattice with small unit cell, γs is large, and the transition
from nonflat to flat band with uniform eigenstate distri-
bution in kf space as well as the localization of energy on a
single mode inside the unit cell are concurrent for larger γ
close to the γs. On the other hand, in moiré lattice with
larger unit cell, the transition from nonflat to flat band
occurs when γ is small (because γs is smaller). The
localization of energy on a single mode presents when
one further increases γ [39].
To verify such localization effects, we perform simula-

tions by solving Eqs. (1)–(5) in synthetic moiré lattice with
ΩA∶ΩB ¼ 5∶3 with finite sites m ∈ ½−44; 60�, correspond-
ing to 7 unit cells with the center cell having m ¼ 1;…; 15.
We inject a frequency-comb source field through the
waveguide coupled to ring B composed of 15 frequency
peaks in the vicinity of modes within m ∈ ½1; 15�, with the
temporal shape s ¼ exp½−3ðΩt=2π − 25Þ2=250�. Detunings
δω between each peak in the input source and each
frequency mode are consistent for 15 modes. We set
δω=Ω ¼ 0.447, 0.162, 0.115, 0.046, −0.046, −0.115,
−0.162, −0.447 to selectively excite 8 bands in Fig. 2(e)
with γ ¼ 0.65, respectively. Signals in both rings are
collected via external waveguides for analysis. In
Figs. 4(a1)–4(h1), we plot evolutions of intensities
for normalized frequency components IA;m;outðtÞ and
IB;m;outðtÞ at the mth mode for different detunings δω,
while Figs. 4(a2)–4(h2) show normalized intensities IA;m;out

and IB;m;out at t ¼ 50 · 2π=Ω. One sees only the frequency

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. (a)–(h) The normalized eigenstate distributions of the 8
bands in Fig. 2(e) with ΩA∶ΩB ¼ 5∶3 and γ ¼ 0.65 at kf ¼
−π=ðNANBΩÞ in the order from top to bottom. The top (bottom)
panels represent the normalized eigenstate distributions in ring A
(ring B). (i) The eigenstate distribution of the 8 flatbands at 7
frequency channels. Band index refers to bands in Fig. 2(e) in the
order from top to bottom.
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mode supported by localized modes in Figs. 3(a)–3(h) is
excited while others vanish quickly. The excited mode does
not evolve into other unit cells either. As comparisons, if we
excite the moiré lattice with the same frequency-comb
source into rings coupled at the strength γ ¼ 0.1, whose
detunings correspond to the bands in Fig. 2(b), such
localization effects disappear [39]. Hence, by taking ad-
vantage of the eigenstate characteristic that one flatband is
linked to one frequency mode in each unit cell, our results
demonstrate the manipulation of spectral localization posi-
tions in this 1D synthetic moiré lattice.
In summary, we study an analog model of moiré lattice

projected into one-dimensional synthetic frequency dimen-
sion, by resonantly coupling two modulated rings at
irreducible lengths. When the coupling strength between
two rings exceeds the threshold γs, all bands are found to
become flat and each one along the entire kf space
corresponds to the eigenstate with its energy distribution
localized on one frequency mode in one unit cell. We
further demonstrate that one can manipulate such localiza-
tion features by selectively exciting the bands in simulations.
Further introduction of photon-photon interactions from
optical nonlinearity in the frequency dimension [44] can
provide unique opportunities of studying strongly correlated
phases [45,46] in 1D synthetic moiré lattice. Our theore-
tical scheme is potentially valid in future experimental

realizations on several optical platforms, such as lithium
niobitemicrorings [47–50], fiber-ring system [26,27,51–54],
and on-chip silicon [55–57]. Together, these ingredients
provide a flexible platform for generating various moiré
lattices using frequency as a synthetic dimension, and also
hold potential optical applications such as generating small
effective free spectral range by coupling smaller rings in
integrated photonics. The controllable localization position
inside one adjustable unit cell may inspire more exotic
phenomena including the combination of moiré physics
with Floquet engineering of topological phases [58].
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